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The relation of eye movements to the
occurrence of freezing of gait in
Parkinson’s disease

Juan Fernandez-Ruiz,"'? ®Heidi C. Riek,® ®Donald C. Brien,® Brian C. Coe,*
David A. Grimes,"’s’6 Anthony E. Lang,7’8'9"0 Connie Marras,m Mario Masellis,
Richard H. Swartz,I 1,12 Brian Tan,” Malcolm A. Binns,""I5 Stephen R. Arnott,I6 the ONDRI
Investigators and Douglas P. Munoz®'’

11,12,13

Freezing of gait is a debilitating motor symptom in Parkinson’s disease that significantly increases fall risk and impairs quality of life.
The poorly understood pathophysiology of freezing of gait presents challenges for early prediction and therapeutic intervention. This
prospective study investigated whether eye movement abnormalities, specifically in the anti-saccade paradigm, could predict freezing
of gait onset in Parkinson’s disease patients over a two-year follow-up period. We analysed longitudinal data from the Ontario
Neurodegenerative Disease Research Initiative, focusing on Parkinson’s disease patients without freezing of gait at baseline who
underwent comprehensive clinical evaluations and eye movement recordings. Anti-saccade reaction time and error ratio, combined
with clinical measures including right upper extremity rigidity, demonstrated significant predictive value for freezing of gait develop-
ment within two years. These findings suggest that eye movement deficits and upper limb rigidity emerge years before freezing of gait
onset, indicating a prodromal phase in freezing of gait pathogenesis. The predictive relationship between these measures supports the
hypothesis of shared neural substrates, potentially involving the mesencephalic locomotor region, in the development of both oculo-
motor dysfunction and gait freezing episodes.
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Prodromal Indicators of
Freezing of Gait
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Eye-Movements and Upper-Limb Deficits
Predict Freezing of Gait Years Before It
Emerges in Parkinson's Disease

Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative
disorder marked by motor symptoms such as bradykinesia,
rigidity, tremor, and postural instability.! Freezing of Gait
(FOG), a transient inability to walk despite the intention to
do so, is particularly debilitating, often causing falls and re-
ducing quality of life." The pathophysiology of FOG remains
unclear, complicating its prediction and management.”

Eye movement abnormalities, including disturbances of
saccades and smooth pursuit, have been linked to motor
and non-motor symptoms in PD.** Neural circuits control-
ling eye movements overlap with those involved in gait and
balance,”® suggesting that pathophysiological changes in
these circuits may impact oculomotor performance, gait,
and balance, including the emergence of FOG.” "’

This study examined whether early alterations in saccadic
eye movements could predict FOG in PD. Using data from
the Ontario Neurodegenerative Disease Research Initiative
(ONDRI), we analysed eye movement and clinical assess-
ments over two years to identify early predictors of FOG."'"!3

Materials and methods

One hundred patients with idiopathic PD,"* Hoehn & Yahr
scores of 1-3, and normal or corrected-to-normal vision
completed baseline assessments, including the Freezing of
Gait Questionnaire (FOG-Q)"® and oculomotor evaluations
ON medication. At the two-year follow-up, 66 participants
remained active in the study, including 21 who were
FOG-free at baseline. These 21 patients were divided into
two groups based on their FOG status after two years: those
who remained FOG-free (n-FOG, 7 = 10) and those who de-
veloped FOG (y-FOG, n=11) (see supplemental materials
for detailed participant descriptions).

Ethical approval was obtained, and participants provided
written consent according to the Declaration of Helsinki.
Because the ONDRI battery required several hours, partici-
pants remained ON their usual levodopa regimen. Sustained
medication withdrawal was considered impractical and un-
comfortable for the patients. Approval for experimental
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procedures was obtained from the Queen’s University Health
Sciences and Affiliated Teaching Hospitals Research Ethics
Board and research ethics committees at all participating
ONDRI recruitment sites.

Each participant underwent clinical evaluations, including
the Montreal Cognitive Assessment (MoCA),'® Hoehn &
Yahr scale (HY),'” and Movement Disorder Society-Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS) (total and
Part III scores).'® Assessments were conducted at baseline
and two-year follow-up.'” FOG frequency and severity were
assessed using the six-item FOG-Q, scored on a 5-point scale,
with higher scores indicating more severe FOG."

The interleaved pro/anti-saccade task (IPAST) was used to
evaluate all participants, using an infrared video-based eye
tracker with a sampling rate of 500 Hz..">'?*° For detailed
methods, data preprocessing and saccade classification, see
supplementary materials.*

We calculated saccade reaction time (SRT), subdivided
into express-latency (90-139 ms) and regular-latency (140-
800 ms) for pro- and anti-saccades.'’*' Percentages of
express- and regular-latency direction errors and fixation
breaks were computed for pro- and anti-saccade trials.
Additionally, the mean amplitude of correct pro- and anti-
saccades was calculated, providing a comprehensive sum-
mary of oculomotor behaviours across all viable responses.

Statistical tests compared the #-FOG and y-FOG groups.
Independent samples t-tests assessed differences in age, dis-
ease duration, HY scale scores, MDS-UPDRS, levodopa
equivalent daily doses (LEDD),** and MoCA scores, while
a chi-square test of independence evaluated sex distribution
differences. For preprocessing, a two-step approach opti-
mized feature scaling of eye-movement and clinical data.
First, Winsorization adjusted extreme values beyond the
1st and 99th percentiles to these thresholds, reducing outlier
influence while preserving data integrity.>? Next, min-max
standardization scaled data linearly between 0 and 1 using
the formula x,rmalized={% — Xmin/Xmax — Xmin}, €NSUTing pro-
portional feature contributions. This preprocessing frame-
work improved data reliability and analysis, supporting
algorithms sensitive to input magnitudes and providing a
strong foundation for comparing clinical and oculomotor
features across groups.

Longitudinal analyses of demographics, motor evalu-
ation, cognitive screening, and FOG severity were conducted
using mixed-effects modelling, suitable for repeated mea-
sures and unbalanced datasets. Group comparisons were
performed using MANCOVA to assess the effect of group
(n-FOG versus y-FOG) on baseline eye-movement and other
variables, controlling for age and disease duration. Post hoc
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Tukey’s HSD tests explored specific differences after signifi-
cant MANCOVA results, controlling the family-wise error
rate and Type I errors across multiple comparisons.**
Receiver Operating Characteristic (ROC) curve analysis
assessed the classification ability of variables with significant
group differences to predict FOG. ROC curves plotted true
positive rate (TPR) against false positive rate (FPR), while
Youden’s Index (TPR—FPR) identified optimal thresholds
maximizing sensitivity and specificity. Higher Youden’s
Index values indicated better discriminatory ability. Area
Under the Curve (AUC) quantified overall performance,
with values closer to 1 reflecting superior accuracy, ensuring
robust evaluation of each variable’s predictive capability.

Results

There were no significant differences between the n-FOG
and y-FOG groups at baseline in terms of age, disease dur-
ation or sex distribution. Clinical evaluations conducted dur-
ing the first session also indicated no significant differences in
the scores of the HY scale, the MDS-UPDRS, LEDD, or
MoCA (see supplementary results for details).

Longitudinal analyses were performed on the HY scale,
MDS-UPDRS, LEDD, MoCA and FOG-Q score data.
Mixed-effects model analyses were conducted to assess the ef-
fects of group (#-FOG and y-FOG) and time (baseline and
follow-up) (Supplementary Table I), taking into account the
individual change over time. In summary, the groups were
homogeneous at the beginning. However, for MoCA and
FOG-Q, there was a significant interaction effect between
group and time, suggesting that the y-FOG group experienced
a larger longitudinal decline in these scores compared to the
n-FOG group (see supplementary results for details).

The main aim of this study was to explore whether eye move-
ment variables recorded at baseline differed between indivi-
duals who would or would not develop FOG two years
later."?

MANCOVA revealed significant group effects on PS vari-
ables, Wilks’ A =0.44, F(5, 13)=3.21, P=0.04, #2=10.55,
with no significant effects of age or disease duration.
Tukey’s HSD showed significant group differences in PS
amplitude (P=0.02, #2=0.12), with larger amplitudes in
the #n-FOG group (Fig.1). No differences were found for PS
SRT, errors, or fixation breaks. Longitudinal analysis
showed significant group differences in PS amplitude (P =
0.01, y2=1.16), but no time (P =0.09, #2=10.09), or inter-
action effects (P =0.79, #2=0.0).
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MANCOVA revealed significant group effects, Wilks’
A=0.30, F(5, 13) =5.99, P=0.00, #2=0.69. Tukey’s HSD
showed group differences in anti-saccade SRT (P=0.03,
7n2=0.2),amplitude (P = 0.02, n2 = 0.24), express-latency er-
ror ratio (P =0.02, n2=0.23), and regular-latency error ra-
tio (P=0.02, n2=0.23) (Fig.1 A), but not fixation breaks.
Mixed-effects analysis showed significant group differences
and time effects only for anti-saccade SRT (P=0.01,
7n?=1.06 and P=0.01, 2=0.26), and regular-latency error
ratio (P=0.01,7#2=1.18 and P =0.03,12=0.23), but no in-
teractions (P =0.8,#2=0.01 and P =0.58, #2=0.03 respect-
ively). Results suggest significant oculomotor differences
existed before FOG onset, without larger longitudinal de-
clines in the y-FOG group.

MANCOVA revealed significant group effects on motor-
related clinical variables, Wilks’ A=0.19, F(10, 8)=3.39,
P =0.048,1%=0.81, with no significant effects of age or dis-
ease duration. Tukey’s HSD showed group differences in tre-
mor (P=0.01, #2=0.29), postural tremor left hand LH
(P=0.01, n2=0.25), resting tremor amplitude LH (P =0.01,
n?=0.335), right arm rigidity (P = 0.02,12=0.23), and RH fin-
ger tapping (P =0.03, 4#2=0.21) (Fig.1 B). No differences were
found for right-hand (RH) postural tremor, RH amplitude tre-
mor, LH rigidity, or LH finger tapping, though neck rigidity
had a P=0.052.

J. Fernandez-Ruiz et al.

ROC analyses evaluated the classification ability of variables to
predict FOG development (Fig. 2, Supplementary Table 2). AS
regular-latency error ratio and AS express-latency error ratio
showed the highest diagnostic ability (AUC: 0.79, 0.78), with
high sensitivity (1.00, 0.90) and reasonable specificity (0.55,
0.73), supported by Youden’s Index (0.55, 0.63). Right upper
extremity rigidity also performed well (AUC: 0.79, sensitivity:
0.80, specificity: 0.82, Youden’s Index: 0.62). Moderate pre-
dictors included AS SRT, neck rigidity (AUC: 0.75, Youden’s
Index: 0.52), and right finger tapping (AUC: 0.74, Youden’s
Index: 0.44). Poor predictors included PS amplitude and tre-
mor variables (AUC: 0.20, Youden’s Index: 0.0).

Discussion

This study investigated whether eye movement variables pre-
dict the development of FOG in PD patients over two years.
We found that AS variables (regular-latency error ratio,
express-latency error ratio) and clinical measures (e.g. right
upper extremity rigidity) had strong classification ability
prior to FOG development. These results highlight the po-
tential for including eye movement assessments with clinical
evaluations for early prediction and intervention (as effective
treatments become available) for FOG in PD patients.

Our findings are supported by prior studies showing im-
paired saccadic latencies,”»® and anti-saccade errors’ in PD
patients with FOG. Our results further identified useful AS
SRT thresholds, highlighting its utility as a marker.
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Figure 2 Receiver operating characteristic (ROC) curves for the only variables predicting freezing of gate (FOG). The dots on
each curve mark the optimal cut-off points as determined by Youden’s Index. (A) Eye-movement variables. (B) Clinical variables. AUC: area under

the curve. Left panel lines are shown jittered for clarity purposes.

The neurological relationship between eye movement def-
icits and FOG in PD is underpinned by several key neural me-
chanisms. Disruptions in fronto-parietal networks involved
in cognitive control and inhibitory processes affect anti-
saccade performance and automatic and voluntary sac-
cades.”*>?¢ Additionally, basal ganglia dysfunction affects
the initiation and execution of both eye and limb move-
ments, contributing to the motor disturbances seen in
FOG.® Furthermore, prolonged saccade latency correlates
with more severe motor symptoms or motor asymmetries
in PD patients with FOG.'%?” Finally, gait and eye move-
ment control are both affected by altered connectivity within
the mesencephalic locomotor region (MLR), including the
pedunculopontine nucleus.’>”-*%2°

Limitations: Testing rigidity and tremor ON medication
may blunt symptom severity and limit sensitivity, yet these
scores still predicted later FOG. The modest sample size rela-
tive to multiple predictors tested raises potential concerns
about overfitting; replication in larger cohorts will be im-
portant to confirm these predictive relationships.

In conclusion, our findings demonstrate that oculomotor
deficits (anti-saccade error ratio and reaction time) combined
with lateralized motor signs (right upper extremity rigidity
and finger tapping decrements) serve as strong prodromal in-
dicators of FOG development in PD.

Supplementary material

Supplementary material is available at Brain Communications
online.
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