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The relation of eye movements to the 
occurrence of freezing of gait in 
Parkinson’s disease

Juan Fernandez-Ruiz,1,2 Heidi C. Riek,3 Donald C. Brien,3 Brian C. Coe,3

David A. Grimes,4,5,6 Anthony E. Lang,7,8,9,10 Connie Marras,7,9 Mario Masellis,11,12,13

Richard H. Swartz,11,12 Brian Tan,14 Malcolm A. Binns,14,15 Stephen R. Arnott,16 the ONDRI 
Investigators and Douglas P. Munoz3,17

Freezing of gait is a debilitating motor symptom in Parkinson’s disease that significantly increases fall risk and impairs quality of life. 
The poorly understood pathophysiology of freezing of gait presents challenges for early prediction and therapeutic intervention. This 
prospective study investigated whether eye movement abnormalities, specifically in the anti-saccade paradigm, could predict freezing 
of gait onset in Parkinson’s disease patients over a two-year follow-up period. We analysed longitudinal data from the Ontario 
Neurodegenerative Disease Research Initiative, focusing on Parkinson’s disease patients without freezing of gait at baseline who 
underwent comprehensive clinical evaluations and eye movement recordings. Anti-saccade reaction time and error ratio, combined 
with clinical measures including right upper extremity rigidity, demonstrated significant predictive value for freezing of gait develop
ment within two years. These findings suggest that eye movement deficits and upper limb rigidity emerge years before freezing of gait 
onset, indicating a prodromal phase in freezing of gait pathogenesis. The predictive relationship between these measures supports the 
hypothesis of shared neural substrates, potentially involving the mesencephalic locomotor region, in the development of both oculo
motor dysfunction and gait freezing episodes.
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Graphical Abstract

Introduction
Parkinson’s disease (PD) is a progressive neurodegenerative 
disorder marked by motor symptoms such as bradykinesia, 
rigidity, tremor, and postural instability.1 Freezing of Gait 
(FOG), a transient inability to walk despite the intention to 
do so, is particularly debilitating, often causing falls and re
ducing quality of life.1 The pathophysiology of FOG remains 
unclear, complicating its prediction and management.2

Eye movement abnormalities, including disturbances of 
saccades and smooth pursuit, have been linked to motor 
and non-motor symptoms in PD.3,4 Neural circuits control
ling eye movements overlap with those involved in gait and 
balance,5,6 suggesting that pathophysiological changes in 
these circuits may impact oculomotor performance, gait, 
and balance, including the emergence of FOG.7-10

This study examined whether early alterations in saccadic 
eye movements could predict FOG in PD. Using data from 
the Ontario Neurodegenerative Disease Research Initiative 
(ONDRI), we analysed eye movement and clinical assess
ments over two years to identify early predictors of FOG.11-13

Materials and methods
Participants
One hundred patients with idiopathic PD,14 Hoehn & Yahr 
scores of 1–3, and normal or corrected-to-normal vision 
completed baseline assessments, including the Freezing of 
Gait Questionnaire (FOG-Q)15 and oculomotor evaluations 
ON medication. At the two-year follow-up, 66 participants 
remained active in the study, including 21 who were 
FOG-free at baseline. These 21 patients were divided into 
two groups based on their FOG status after two years: those 
who remained FOG-free (n-FOG, n = 10) and those who de
veloped FOG (y-FOG, n = 11) (see supplemental materials
for detailed participant descriptions).

Ethical approval was obtained, and participants provided 
written consent according to the Declaration of Helsinki. 
Because the ONDRI battery required several hours, partici
pants remained ON their usual levodopa regimen. Sustained 
medication withdrawal was considered impractical and un
comfortable for the patients. Approval for experimental 
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procedures was obtained from the Queen’s University Health 
Sciences and Affiliated Teaching Hospitals Research Ethics 
Board and research ethics committees at all participating 
ONDRI recruitment sites.

Clinical assessments
Each participant underwent clinical evaluations, including 
the Montreal Cognitive Assessment (MoCA),16 Hoehn & 
Yahr scale (HY),17 and Movement Disorder Society-Unified 
Parkinson’s Disease Rating Scale (MDS-UPDRS) (total and 
Part III scores).18 Assessments were conducted at baseline 
and two-year follow-up.19 FOG frequency and severity were 
assessed using the six-item FOG-Q, scored on a 5-point scale, 
with higher scores indicating more severe FOG.15

Eye movement evaluation
The interleaved pro/anti-saccade task (IPAST) was used to 
evaluate all participants, using an infrared video-based eye 
tracker with a sampling rate of 500 Hz..13,19,20 For detailed 
methods, data preprocessing and saccade classification, see 
supplementary materials.20

We calculated saccade reaction time (SRT), subdivided 
into express-latency (90–139 ms) and regular-latency (140– 
800 ms) for pro- and anti-saccades.13,21 Percentages of 
express- and regular-latency direction errors and fixation 
breaks were computed for pro- and anti-saccade trials. 
Additionally, the mean amplitude of correct pro- and anti- 
saccades was calculated, providing a comprehensive sum
mary of oculomotor behaviours across all viable responses.

Statistical analysis
Statistical tests compared the n-FOG and y-FOG groups. 
Independent samples t-tests assessed differences in age, dis
ease duration, HY scale scores, MDS-UPDRS, levodopa 
equivalent daily doses (LEDD),22 and MoCA scores, while 
a chi-square test of independence evaluated sex distribution 
differences. For preprocessing, a two-step approach opti
mized feature scaling of eye-movement and clinical data. 
First, Winsorization adjusted extreme values beyond the 
1st and 99th percentiles to these thresholds, reducing outlier 
influence while preserving data integrity.23 Next, min-max 
standardization scaled data linearly between 0 and 1 using 
the formula xnormalized={x – xmin/xmax – xmin}, ensuring pro
portional feature contributions. This preprocessing frame
work improved data reliability and analysis, supporting 
algorithms sensitive to input magnitudes and providing a 
strong foundation for comparing clinical and oculomotor 
features across groups.

Longitudinal analyses of demographics, motor evalu
ation, cognitive screening, and FOG severity were conducted 
using mixed-effects modelling, suitable for repeated mea
sures and unbalanced datasets. Group comparisons were 
performed using MANCOVA to assess the effect of group 
(n-FOG versus y-FOG) on baseline eye-movement and other 
variables, controlling for age and disease duration. Post hoc 

Tukey’s HSD tests explored specific differences after signifi
cant MANCOVA results, controlling the family-wise error 
rate and Type I errors across multiple comparisons.24

Receiver Operating Characteristic (ROC) curve analysis 
assessed the classification ability of variables with significant 
group differences to predict FOG. ROC curves plotted true 
positive rate (TPR) against false positive rate (FPR), while 
Youden’s Index (TPR—FPR) identified optimal thresholds 
maximizing sensitivity and specificity. Higher Youden’s 
Index values indicated better discriminatory ability. Area 
Under the Curve (AUC) quantified overall performance, 
with values closer to 1 reflecting superior accuracy, ensuring 
robust evaluation of each variable’s predictive capability.

Results
Demographic and clinical screening 
results.
There were no significant differences between the n-FOG 
and y-FOG groups at baseline in terms of age, disease dur
ation or sex distribution. Clinical evaluations conducted dur
ing the first session also indicated no significant differences in 
the scores of the HY scale, the MDS-UPDRS, LEDD, or 
MoCA (see supplementary results for details).

Longitudinal analyses were performed on the HY scale, 
MDS-UPDRS, LEDD, MoCA and FOG-Q score data. 
Mixed-effects model analyses were conducted to assess the ef
fects of group (n-FOG and y-FOG) and time (baseline and 
follow-up) (Supplementary Table I), taking into account the 
individual change over time. In summary, the groups were 
homogeneous at the beginning. However, for MoCA and 
FOG-Q, there was a significant interaction effect between 
group and time, suggesting that the y-FOG group experienced 
a larger longitudinal decline in these scores compared to the 
n-FOG group (see supplementary results for details).

Eye movement results
The main aim of this study was to explore whether eye move
ment variables recorded at baseline differed between indivi
duals who would or would not develop FOG two years 
later.13

Pro-saccades (PS)
MANCOVA revealed significant group effects on PS vari
ables, Wilks’ λ = 0.44, F(5, 13) = 3.21, P = 0.04, η² = 0.55, 
with no significant effects of age or disease duration. 
Tukey’s HSD showed significant group differences in PS 
amplitude (P = 0.02, η² = 0.12), with larger amplitudes in 
the n-FOG group (Fig.1). No differences were found for PS 
SRT, errors, or fixation breaks. Longitudinal analysis 
showed significant group differences in PS amplitude (P =  
0.01, η² = 1.16), but no time (P = 0.09, η² = 0.09), or inter
action effects (P = 0.79, η² = 0.0).
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Anti-saccades (AS)
MANCOVA revealed significant group effects, Wilks’ 
λ = 0.30, F(5, 13) = 5.99, P = 0.00, η² = 0.69. Tukey’s HSD 
showed group differences in anti-saccade SRT (P = 0.03, 
η² = 0.2), amplitude (P = 0.02, η² = 0.24), express-latency er
ror ratio (P = 0.02, η² = 0.23), and regular-latency error ra
tio (P = 0.02, η² = 0.23) (Fig.1 A), but not fixation breaks. 
Mixed-effects analysis showed significant group differences 
and time effects only for anti-saccade SRT (P = 0.01, 
η² = 1.06 and P = 0.01, η² = 0.26), and regular-latency error 
ratio (P = 0.01, η² = 1.18 and P = 0.03, η² = 0.23), but no in
teractions (P = 0.8, η² = 0.01 and P = 0.58, η² = 0.03 respect
ively). Results suggest significant oculomotor differences 
existed before FOG onset, without larger longitudinal de
clines in the y-FOG group.

MDS-UPDRS
MANCOVA revealed significant group effects on motor- 
related clinical variables, Wilks’ λ = 0.19, F(10, 8) = 3.39, 
P = 0.048, η² = 0.81, with no significant effects of age or dis
ease duration. Tukey’s HSD showed group differences in tre
mor (P = 0.01, η² = 0.29), postural tremor left hand LH 
(P = 0.01, η² = 0.25), resting tremor amplitude LH (P = 0.01, 
η² = 0.35), right arm rigidity (P = 0.02, η² = 0.23), and RH fin
ger tapping (P = 0.03, η² = 0.21) (Fig.1 B). No differences were 
found for right-hand (RH) postural tremor, RH amplitude tre
mor, LH rigidity, or LH finger tapping, though neck rigidity 
had a P = 0.052.

ROC analyses
ROC analyses evaluated the classification ability of variables to 
predict FOG development (Fig. 2, Supplementary Table 2). AS 
regular-latency error ratio and AS express-latency error ratio 
showed the highest diagnostic ability (AUC: 0.79, 0.78), with 
high sensitivity (1.00, 0.90) and reasonable specificity (0.55, 
0.73), supported by Youden’s Index (0.55, 0.63). Right upper 
extremity rigidity also performed well (AUC: 0.79, sensitivity: 
0.80, specificity: 0.82, Youden’s Index: 0.62). Moderate pre
dictors included AS SRT, neck rigidity (AUC: 0.75, Youden’s 
Index: 0.52), and right finger tapping (AUC: 0.74, Youden’s 
Index: 0.44). Poor predictors included PS amplitude and tre
mor variables (AUC: 0.20, Youden’s Index: 0.0).

Discussion
This study investigated whether eye movement variables pre
dict the development of FOG in PD patients over two years. 
We found that AS variables (regular-latency error ratio, 
express-latency error ratio) and clinical measures (e.g. right 
upper extremity rigidity) had strong classification ability 
prior to FOG development. These results highlight the po
tential for including eye movement assessments with clinical 
evaluations for early prediction and intervention (as effective 
treatments become available) for FOG in PD patients.

Our findings are supported by prior studies showing im
paired saccadic latencies,7,8 and anti-saccade errors9 in PD 
patients with FOG. Our results further identified useful AS 
SRT thresholds, highlighting its utility as a marker.

A B C D E

F G H I J

Figure 1 Normalized metrics that differed between groups at the first visit. Group effects (n-FOG (n = 10) and y-FOG (n = 11)) are 
from the primary models (MANCOVA with variable-level follow-up tests, adjusted for covariates as specified in Methods). Panels display individual 
data points where each dot represents one participant; central horizontal lines indicate medians. A-E, Eye-movement variables: (A) PS amplitude 
(P = 0.02, η² = 0.12); (B) AS reaction time (P = 0.03, η² = 0.2); (C) AS amplitude (P = 0.02, η² = 0.24); (D) AS express error (P = 0.02, η² = 0.23); 
(E) AS error (P = 0.02, η² = 0.23). F-J, Motor variables: (F) tremor (P = 0.01, η² = 0.29); (G) left hand postural tremor (P = 0.01, η² = 0.25); (H) left 
hand tremor amplitude (P = 0.01, η² = 0.35); (I) right arm rigidity (P = 0.02, η² = 0.23); (J) right finger tapping (P = 0.03, η² = 0.21). PS: pro-saccade; 
AS: antisaccade.
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The neurological relationship between eye movement def
icits and FOG in PD is underpinned by several key neural me
chanisms. Disruptions in fronto-parietal networks involved 
in cognitive control and inhibitory processes affect anti- 
saccade performance and automatic and voluntary sac
cades.9,25,26 Additionally, basal ganglia dysfunction affects 
the initiation and execution of both eye and limb move
ments, contributing to the motor disturbances seen in 
FOG.8 Furthermore, prolonged saccade latency correlates 
with more severe motor symptoms or motor asymmetries 
in PD patients with FOG.10,27 Finally, gait and eye move
ment control are both affected by altered connectivity within 
the mesencephalic locomotor region (MLR), including the 
pedunculopontine nucleus.5,7,28,29

Limitations: Testing rigidity and tremor ON medication 
may blunt symptom severity and limit sensitivity, yet these 
scores still predicted later FOG. The modest sample size rela
tive to multiple predictors tested raises potential concerns 
about overfitting; replication in larger cohorts will be im
portant to confirm these predictive relationships.

In conclusion, our findings demonstrate that oculomotor 
deficits (anti-saccade error ratio and reaction time) combined 
with lateralized motor signs (right upper extremity rigidity 
and finger tapping decrements) serve as strong prodromal in
dicators of FOG development in PD.

Supplementary material
Supplementary material is available at Brain Communications
online.
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