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Objective speech measures capture depressive symptoms and
associated cognitive difficulties
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Psychiatry lacks objective biomarkers for assessing depression, relying instead on subjective measures, such as the Hamilton
Depression Rating Scale (HAMD-17). This study examined whether speech features could serve as objective markers of depressive
symptoms and its associated cognitive difficulties. Sixty-six individuals with major depressive disorder (MDD) and 54 non-depressed
control participants completed a speech assessment, responding to the prompt: “Please tell me how you are feeling today.” Linguistic
(valence, emotional intensity, agency) and acoustic (pitch, pitch variance, speech rate, time spent pausing) features were derived
from natural language processing. These speech features were analyzed individually and collectively as a composite score
representing overall speech disturbance. A subset of participants (40 with MDD, 38 controls) also completed a validated executive
function task. ANCOVA models compared speech features between groups. Linear regression models examined associations
between speech features, depression severity (HAMD-17), and performance on an executive function task. Compared to controls,
individuals with MDD used language that was more negatively valenced, emotionally intense, and less agentic. They also
demonstrated lower pitch, slower speech rate, and more time spent pausing. The composite speech score also differed between
groups. Speech features and executive function were not associated with depression severity, as measured by the HAMD-17.
However, several speech features were associated with executive function. Taken together, these findings suggest that speech
features may provide a scalable, objective method for detecting depressive symptoms and associated executive difficulties.

Translational Psychiatry          (2025) 15:525 ; https://doi.org/10.1038/s41398-025-03728-2

INTRODUCTION
Depression is a prevalent and disabling mental health condition,
characterized by a range of symptoms including low mood,
anhedonia, somatic changes, and cognitive difficulties [1]. Unlike
other fields of medicine, psychiatry currently lacks validated
objective biomarkers for assessing depression. Instead, symptoms
are typically measured using self- and clinician-reported measures,
with the Hamilton Depression Rating Scale (HAMD-17) being among
the most widely used. However, these traditional assessments can
be influenced by recall bias, fluctuations in mood state, individuals’
insight into their symptoms, and clinician subjectivity [2, 3].
Additionally, such measures often fail to fully capture cognitive
symptoms, which are both common in depression and strongly
associated with poor functioning and quality of life [4].
Recent advancements in artificial intelligence (AI) and natural

language processing (NLP) have sparked interest in speech as a
potential biomarker for depression [5, 6]. Speech-based biomar-
kers offer several advantages: they are scalable, non-invasive, and
can be collected remotely, making them an appealing comple-
ment to traditional assessment scales. Speech output reflects
linguistic content (what is said) and acoustic qualities (how it is

said), both of which are altered in depression [7, 8]. In terms of
linguistic features, studies analyzing social media posts, psy-
chotherapy transcripts, essays, and free speech show that
individuals with depression tend to use language that is more
negatively valenced [9–15] (e.g., “sad”, “failure”, vs. “happy”,
“comfort”), more emotionally intense (e.g., “despair”, “panic” vs.
“fatigue”, “relaxed”), and reflective of lower agency (e.g., “power-
less”, “hopeless” vs. “confidence”, “capable”) [16–18]. Studies also
show that more negatively valenced language is associated with
greater depression severity [10, 19, 20].
With respect to acoustic features, clinicians have long observed

that individuals with depression speak in a monotonic, slow, and
effortful manner, observations that have now been systematically
documented. For example, studies consistently report that
individuals with depression exhibit lower pitch [21–28], less pitch
variability [24, 27], slower speech rate [25, 29–35] and longer
pauses [25, 34, 36] compared to non-depressed participants.
Additionally, several studies have reported that greater depression
severity is associated with lower and less variable pitch [37–40],
slower speech rate [29, 37, 39, 41–43], and longer pauses
[39, 42, 43].
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Speech features may also capture cognitive difficulties. For
example, a study of community-dwelling participants in the
Framingham Heart Study found that lower and less variable pitch,
along with shorter speech segment lengths, were associated with
cognitive impairment [44]. Similarly, individuals with mild cognitive
impairment have been shown to exhibit slower speaking rates and
longer pauses compared to healthy controls [45]. However, the
potential of speech features to capture cognitive difficulties in
individuals with depression has not yet been examined.
Changes in cognitive function is a recognized criterion of

depression, with difficulties in executive function well-
documented among individuals with the disorder [46]. Cognitive
models of depression highlight deficits in executive function as a
core mechanism underlying symptoms, such as persistent
rumination, reduced goal-directed behavior, and difficulties
disengaging from negative information [47–49]. However, tradi-
tional depression measures, such as the HAMD-17, often fail to
fully capture cognitive symptoms [4, 50]. This gap is significant, as
cognitive difficulties in depression are closely linked to poor
functional outcomes and reduced quality of life [4, 51]. These
limitations highlight the need for more comprehensive assess-
ment tools that capture the full range of depression symptoms,
including cognitive symptoms. To our knowledge, no prior studies
have examined the association between speech features and
cognitive performance in individuals with depression. Investigat-
ing this link may lay the groundwork for developing more
objective approaches to depression assessment.
The present study aimed to address this gap by examining

whether speech features could serve as an objective indicator of
depression and its associated cognitive difficulties, with a
particular focus on executive function. Study participants included
individuals with a diagnosis of major depressive disorder (MDD)
and non-depressed controls, who completed a brief speech
assessment and the interleaved pro/anti saccade task (IPAST), a
validated and widely used measure of executive function [52].
The study aimed to address three main questions: 1) Do speech

features differ between individuals with MDD and non-depressed
control participants? 2) Are speech features associated with
depression severity, as measured by the HAMD-17? and 3) Are
speech features associated with executive function, as measured
by the IPAST? Based on previous research, we anticipated that
speech features would differ between the two groups and would
be associated with both depression severity and executive
function performance.

MATERIALS AND METHODS
Participants
Participants with MDD were recruited from the Harquail Centre for
Neuromodulation at Sunnybrook Health Sciences Centre. All participants
had treatment-resistant MDD, which was defined as a failure to respond to
a minimum of two adequately dosed antidepressant medications and a
HAMD-17 score of ≥16 [53]. After clinical screening but prior to receiving
any neuromodulation intervention (e.g., repetitive transcranial magnetic
stimulation, deep brain stimulation, or high-frequency focused ultrasound),
participants were enrolled and tested as part of the present study.
Inclusion criteria for the present study were as follows: (1) a diagnosis of

treatment-resistant unipolar depression with a current major depressive
episode, confirmed by a psychiatrist in accordance with DSM-5 criteria; (2)
age 18 years or older; (3) completion of at least 8 years of education; and
(4) fluency in English. Exclusion criteria included: (1) a history of substance
use disorder with active use in the past 6 months; (2) a diagnosis of a
neurological or neurocognitive disorder; and (3) significant comorbid
psychiatric or medical conditions (e.g., bipolar disorder, schizophrenia,
uncontrolled diabetes).
Non-depressed control participants were recruited from the community

through online advertisements as well as posters placed in hospitals and
public community spaces. Eligibility criteria included: (1) age 18 years or
older; (2) completion of at least 8 years of education; and (3) fluency in
English. Exclusion criteria were consistent with those applied to

participants with depression, with the additional requirement that controls
had no current or past history of psychiatric illness or related treatment
(e.g., psychiatric medication, psychotherapy, or hospitalization due to a
psychiatric illness).
All procedures were reviewed and approved by the Sunnybrook Ethics

Review Board (Project Identification Number: 2106). Participants provided
informed consent before undergoing study procedures.

Speech assessment
Winterlight Labs’ speech assessment tool [54] was used to collect speech
samples via an iOS/Android application. Participants responded to the
prompt, “Please tell me how you are feeling today.” Participants could speak
for as long as they wished. Assessments were completed either at
Sunnybrook Health Sciences Centre or remotely in a quiet room.
Speech recordings were analyzed using Winterlight Labs’ validated

software, which employs NLP to extract acoustic and linguistic features for
statistical analysis. The software and processing pipeline have been
described elsewhere [55]. For this study, we focused on linguistic and
acoustic speech features previously associated with depression [5, 6, 9].
Linguistic features included valence, emotional intensity, and agency of
the language used, whereas acoustic features included pitch, pitch
variance, speech rate, and time spent pausing (summarized in Table 1).
We did not examine features sensitive to phoneme variation, such as jitter,
shimmer, or harmonics-to-noise ratio, as our task involved spontaneous
speech, which produces greater variability in phoneme articulation than
controlled, read-speech tasks [56, 57]. Similarly, we did not include mel-
frequency cepstral coefficients, as they can be affected by inconsistent
recording environments [58, 59].

Executive function
Executive function was assessed using the IPAST, an eye-tracking task that
provides a sensitive and robust measure of executive function [60, 61]. We
selected the IPAST over standard neuropsychological tests because it is
highly sensitive to core executive processes [62–64], such as attentional
control, inhibition, and cognitive flexibility, all of which have been
implicated in depression. Moreover, because the IPAST relies on eye
movements rather than verbal or manual responses, it reduces potential
confounding effects associated with motor output [65].
Participants completed the IPAST in a dark room with their heads

supported in a headrest. They were positioned 60 cm from a 17-inch LCD
monitor (1280 × 1024 pixel resolution, 32-bit color, 60 Hz refresh rate). Eye
position was tracked using an infrared video-based eye tracker (Eyelink
1000 Plus, SR Research Ltd, Toronto, ON, Canada) at a sampling rate of
500 Hz. Before starting the task, each participant underwent a 9-point array
calibration and validation procedure, followed by a practice session.
In the IPAST, participants completed a series of trials in which they were

instructed to either look toward a visual stimulus (pro-saccade) or suppress
this response and look in the opposite direction (anti-saccade). Pro- and
anti-saccade trials were intermixed throughout the task. Pro-saccade
reaction time (RT) reflects processing speed, whereas anti-saccade RT
reflects executive function. The latter was the primary variable of interest,
with slower RTs indicating greater difficulty inhibiting the automatic
response to look toward a visual stimulus, and therefore poorer executive
function [52, 60, 61]. Participants completed 240 trials of the IPAST. The full
task protocol is described in Yep et al. [52]. All eye tracking data were
collected at Sunnybrook Health Sciences Centre. IPAST data were
processed using previously described methods [66].

Statistical analysis
Analyses were conducted in R version 4.3.3. Separate models were
performed for each speech feature of interest: valence, emotional intensity,
agency (linguistic features), as well as mean pitch, pitch variance, speech
rate, and time spent pausing (acoustic features). A composite speech score
was calculated by converting each raw speech feature to a z-score based
on sample means and standard deviations. For features negatively
associated with depression, z-scores were sign-reversed to ensure
consistent directionality. The adjusted z-scores were then averaged to
produce a single composite measure, with higher scores reflecting greater
speech alteration.
Demographic variables, including age, sex, and years of education, were

compared between individuals with MDD and non-depressed control
participants using student’s t-tests for continuous variables and chi-
squared tests for categorical variables.
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To address the first question—whether speech features differed
between individuals with MDD and non-depressed controls—we con-
ducted a series of one-way ANCOVA models. Group (MDD vs. control)
served as the independent variable, and each speech feature/the speech
composite served as the dependent variable in separate models. All
models included the following covariates: age (continuous), sex (catego-
rical: male or female), years of education (continuous), and the duration of
the audio recording (continuous). In sensitivity analyses, we additionally
adjusted for testing location (in-person vs. remote) and age at English
acquisition. These variables were not included in the primary models
because all participants were required to be fluent in English, and only a
small subset of participants completed the task in person.
Additionally, a Receiver Operating Characteristic (ROC) analysis was

performed to assess the classification accuracy of each speech feature and
the speech composite, while adjusting for age, sex, years of education and
audio recording duration. While ANCOVA models tested for group
differences in mean values, ROC analysis provided a complementary
measure of how well each feature distinguished between participants with
and without MDD, highlighting their relevance for speech-based screening
of depression.
To address the second question—whether speech features were

associated with depression severity, as measured by the HAMD-17—we
used linear regression models. In these analyses, speech features served as
the independent variables, and HAMD-17 scores as the dependent variable.
Separate models were performed for each speech feature/the speech
composite. Covariates were identical to those used in the ANCOVA models.
To address the third question —whether speech features were

associated with executive function, as measured by the IPAST—we used
linear regression models. In these analyses, individual speech features/the
speech composite served as the predictor variable, and anti-saccade RTs
served as the outcome variable. As above, models were adjusted for age,
sex, years of education, and audio recording duration. Because the
executive measure from the IPAST is based on RT, we included pro-saccade
RT as a covariate to control for general processing speed. This adjustment
accounted for individual differences in processing speed and allowed us to
more accurately capture the executive component of the task.
To further assess whether these associations were specific to executive

function, we performed additional linear regression analyses to examine
whether speech features were associated with pro-saccade RT. In these
models, individual speech features/the speech composite served as the
predictor variable, and pro-saccade RT served as the outcome variable. As
above, models adjusted for age, sex, years of education, and audio
recording duration.

Statistical significance was evaluated using a two-tailed alpha level of
0.05. To account for multiple comparisons, we applied a False Discovery
Rate (FDR) correction using the Benjamini-Hochberg procedure, separately
for each of the three research questions. Both unadjusted and FDR-
corrected p-values are reported. Effect sizes for the ANCOVAs are reported
as partial η², and effect sizes for the linear regression models are reported
as Cohen’s f². No a priori power analysis was performed. A sensitivity
analysis indicated that, with N= 120 and four covariates (df₁= 1, df₂= 114;
α= 0.05), 1-df effects (group contrasts and single-predictor slopes) had
~80% power to detect partial r ≈ 0.25 (partial η² ≈ 0.065; f 2≈ 0.07); for the
anti-saccade models (N= 78, five covariates; df₁= 1, df₂= 71), ~80% power
corresponded to partial r ≈ 0.32 (partial η² ≈ 0.10; f 2≈ 0.11).

RESULTS
Participant characteristics
Table 2 summarizes the demographic and clinical characteristics
of study participants. A total of 66 individuals with MDD and 54
non-depressed control participants completed the speech assess-
ment. A subset of these participants also completed the IPAST
eye-tracking task. This included 40 individuals with MDD (mean
age= 45.0 ± 15.6, 55% female, HAMD-17= 21.0 ± 4.3) and 38
control participants (mean age= 41.2 ± 15.7, 81.6% female).
Prior to the main analyses, we examined associations among

the seven speech features across the full sample using partial
Pearson correlations, adjusting for age, sex, years of education,
and audio recording duration. After applying FDR correct for
multiple comparisons, several significant associations emerged
(Figure S1).
Question 1: Do speech features differ between individuals with

MDD and non-depressed control participants?
As summarized in Table 3 and Fig. 1, ANCOVA models revealed

significant group differences across all linguistic and acoustic
features, except for pitch variance. In terms of linguistic features,
individuals with MDD used language that was more negatively
valenced, emotionally intense, and lower in agency. In terms of
acoustic features, individuals with MDD exhibited lower pitch,
more time spent pausing, and slower speech rate. The speech
composite score also differed significantly between groups. All
results remained statistically significant after applying FDR

Table 1. Linguistic and acoustic speech features assessed and their operational definitions.

Feature Type Description Unit of Measurement

Valence Linguistic Measures the emotional positivity or negativity of words. Scores
range from 1–9 where lower scores indicate the use of more
negatively valenced language (e.g., “murder”= 1.48 vs.
“happiness”= 8.48).

Score based on standardized norms
from psycholinguistic research [77].

Emotional
intensity

Linguistic Measures the level of emotional intensity in words. Scores range
from 1–9 where higher scores correspond to more emotionally
charged language (e.g., “insanity”= 7.79 vs. “calm”= 1.67).

Score based on standardized norms
from psycholinguistic research [77].

Agency Linguistic Measures the degree of control or agency conveyed by words.
Scores range from 1–9 where lower scores indicate language
associated with lower control or agency (e.g.,
“uncontrollable”= 2.18 vs. “successful”= 7.71).

Score based on standardized norms
from psycholinguistic research [77].

Mean pitch Acoustic Measures the average rate at which the vocal folds vibrate during
speech. This vibration rate determines perceived voice pitch. Higher
values correspond to higher-pitched voices and lower values
correspond to lower-pitched voices.

Hertz (Hz)

Pitch variance Acoustic Measures fluctuations in pitch and provides a measure of prosody.
Higher values represent more prosodic speech while lower values
represent more monotone or steady speech.

Hertz (Hz)

Speech rate Acoustic Measures the speed of speech, with lower scores reflecting slower
speech.

Words per minute

Pauses Acoustic Measures the proportion of the audio recording consisting of pauses
lasting 1–2 s, controlling for the total length of the recording. Higher
scores reflect a greater proportion of time spent pausing.

Proportion of time spent pausing
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correction for multiple comparisons. Sensitivity analyses, which
further adjusted for age at which English was learned and
assessment location, yielded similar findings (see Table S1).
In a post hoc ROC analysis, we examined whether speech

features could distinguish between individuals with MDD and
non-depressed control participants. Like the analyses above, all
speech features exhibited moderate to strong discriminability for
depression, with the exception of pitch variance. The speech
composite score demonstrated the greatest discriminability with
an area under the curve of 0.90 (TableS2).
Question 2: Are there associations between speech features and

depression severity, as measured by the HAMD-17?
As summarized in Table S3, the only linguistic feature to show a

significant association with depression severity was agency, such
that lower agency was associated with greater depression severity.
However, this relationship did not survive FDR correction. None of

the acoustic features were significantly associated with depression
severity, nor was the composite speech score. Sensitivity analyses,
which further adjusted for age at which English was learned and
assessment location, yielded similar results (Table S4). Plots
depicting these relationships are provided in Figure S2 and full
model output including results from the sensitivity analysis is
provided in Table S4.
Question 3. Are speech features associated with executive function,

as measured by the IPAST?
Before examining associations between speech features and

anti-saccade RT on the IPAST, we assessed whether anti-saccade
RT differed between individuals with MDD and non-depressed
control participants. Analyses adjusted for age, sex, years of
education, and pro-saccade RT to account for individual differ-
ences in processing speed. Results showed that individuals with
MDD exhibited slower anti-saccade RT than control participants (F
(1, 73)= 5.4, p= 0.02, η²= 0.07). However, depression severity
(HAMD-17 scores) was not significantly associated with anti-
saccade RT (β =−0.001 t=−0.001, p= 0.999, f²=−0.01).
While anti-saccade RT was not associated with depression

severity, it was significantly associated with several speech
features (Table 4; Fig. 2). After adjusting for covariates, including
pro-saccade RT, all linguistic features were significantly associated
with slower anti-saccade RT, including language that was more
negatively valenced, more emotionally intense, and less agentic.
However, the association with emotionally intense language did
not survive FDR correction. Among acoustic features, lower mean
pitch was significantly associated with slower anti-saccade RT and
survived FDR correction. More time spent pausing and slower
speech rate did not reach statistical significance, though both
showed small effect sizes. Pitch variance was not significantly
associated with anti-saccade RT. The composite speech score was
significantly and negatively associated with anti-saccade RT and
survived FDR correction. Sensitivity analyses, which further
adjusted for age at which English was learned and assessment
location, yielded similar findings (Table S5).
To assess whether these associations were specific to anti-

saccade RT, we performed additional linear regression analyses to
test whether speech features were related to pro-saccade RT. As
shown in Table S6, slower speech rate was the only significant
association, but this effect did not survive FDR correction.
Finally, given the observed associations between speech

features and anti-saccade RT, we examined whether the
differences in speech features between individuals with MDD
and controls could be explained by anti-saccade RT, which also
differed between the groups. We used ANCOVA models to
compare speech features between the two groups, adjusting for
age, sex, years of education, audio recording duration, and anti-
saccade RT. Group differences in language valence, emotional
intensity, mean pitch, time spent pausing, speech rate, and the

Table 3. Model output comparing speech features in individuals with MDD and non-depressed control participants.

Speech Feature MDD Mean (SD) Control Mean (SD) F p FDR adjusted p η²

Valence 5.7 (0.6) 6.2 (0.4) 20.7 <0.001*** <0.001*** 0.05

Emotional Intensity 4.1 (0.3) 3.9 (0.2) 11.8 <0.001*** <0.001*** 0.03

Agency 5.5 (0.3) 5.7 (0.2) 15.8 <0.001*** <0.001*** 0.02

Mean Pitch (Hz) 141.0 (36.2) 167.6 (33.3) 10.3 0.002** 0.002** 0.05

Pitch Variance (Hz) 3679 (4286) 3370 (2364) 0.3 0.32 0.57 0.003

Pauses 0.44 (0.2) 0.25 (0.2) 11.4 0.001*** 0.001*** 0.08

Speech Rate (words/min) 96.0 (44.8) 134.9 (40.2) 21.6 <0.001*** <0.001*** 0.15

Speech Composite 0.29 (0.5) −0.35 (0.3) 42.5 <0.001*** <0.001*** 0.27

MDD major depressive disorder, SD standard deviation, FDR false discovery rate, Hz hertz.
***p ≤ 0.001; **p ≤ 0.01; *p ≤ 0.05.

Table 2. Demographic and clinical characteristics of participants.

Participants with
MDD

Non-depressed
control participants

N 66 54

Age, mean (SD) 45.2 (15.1) 44.5 (17.2)

Sex, no (% female) 36 (54.5) 41 (75.9)*

HAMD-17, mean
(SD)1

21.4 (4.2) NA

Education, mean
years (SD)

15.2 (2.3) 17.0 (1.8)***

Age English
learned, mean years
(SD)

2.3 (5.5) 2.5 (4.8)

Ethnicity, no (%)

White 36 (54.5) 20 (37.0)

South Asian 3 (4.5) 11 (20.4)

East Asian 1 (1.5) 10 (18.5)

Arab 4 (6.1) 1 (1.9)

Hispanic 3 (4.5) 0 (0)

Filipino 1 (1.5) 3 (5.6)

Black Caribbean/
Black African

0 (0) 2 (3.7)

Mixed Ethnicity 7 (10.6) 6 (11.1)

Missing Data 11 (16.7) 1 (1.9)
1Two participants were missing HAMD-17 (Hamilton Depression Rating
Scale) data.
***p ≤ 0.001; *p ≤ 0.05.

M. Wiseman et al.

4

Translational Psychiatry          (2025) 15:525 



composite speech score remained significant, whereas agency
was no longer significant (Table S7). These findings suggest that
speech differences between groups are not fully attributable to
differences in executive function, as measured by anti-saccade
RT.

DISCUSSION
The present study examined whether speech could serve as an
objective indicator of depressive symptoms and associated

cognitive difficulties in individuals with MDD. There were three
main findings. First, consistent with prior research, we found that
both linguistic and acoustic speech features [7, 8], as well as
performance on an eye-tracking test of executive function [52],
differed between individuals with MDD and non-depressed
control participants. Second, and contrary to our hypothesis,
none of the speech features were associated with depression
severity, as measured by the HAMD-17. Third, several speech
features were associated with executive function performance, a
domain commonly affected in depression [46].

Table 4. Associations between speech features and anti-saccade RT.

Speech Feature Estimate (β) SE t p FDR adjusted p f² Adjusted R²

Valence −17.31 6.36 −2.71 0.008** 0.02* 0.10 0.54

Emotional Intensity 25.30 11.89 2.13 0.04* 0.06 0.06 0.53

Agency −33.06 10.95 −3.02 0.004** 0.01* 0.13 0.55

Mean Pitch (Hz) −0.40 0.15 −2.70 0.009** 0.02* 0.10 0.54

Pitch Variance (Hz) −0.001 0.001 −0.94 0.35 0.35 0.01 0.50

Pauses 36.65 19.67 1.86 0.07 0.09 0.05 0.52

Speech Rate (words/min) −0.13 0.08 −1.67 0.10 0.12 0.04 0.51

Speech Composite 22.26 6.00 3.54 0.001*** 0.006** 0.18 0.57

RT reaction time, SE standard error, FDR false discovery rate, Hz hertz.
***, p ≤ 0.001; **p ≤ 0.01; *p ≤ 0.05.

Fig. 1 Differences in speech features between individuals with Major Depressive Disorder (MDD) and non-depressed controls. Relative to
controls, individuals with depression (A) used significantly more negatively valenced language (F= 20.7, FDR-adjusted p < 0.001, n2= 0.05), (B)
used language that was significantly more emotionally intense (F= 11.8, FDR-adjusted p < 0.001, n2= 0.05), (C) exhibited significantly lower
agency in their language (F= 15.8, p < 0.001, n2= 0.02), (D) spoke with a significantly lower mean pitch (F= 10.3, FDR-adjusted p= 0.002,
n2= 0.03), (E) did not differ in pitch variance (F= 0.3, FDR-adjusted p= 0.57, n2= 0.003). F paused significantly more (F= 11.4, p= 0.001,
n2= 0.08), (G) spoke significantly slower (F= 21.6, FDR-adjusted p < 0.001, n2= 0.15), and (H) had significantly higher speech composite scores
(F= 42.5, FDR-adjusted p < 0.001, n2= 0.27). Abbreviations. MDD major depressive disorder. ***p ≤ 0.001; **p ≤ 0.01; *p ≤ 0.05.
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Our findings build on prior research suggesting that linguistic
and acoustic speech features differ between individuals with
depression and non-depressed individuals [5, 6, 9]. Specifically, in
the present study, we found that individuals with MDD used
language that was more negatively valenced, higher in emotional
intensity, and lower in agency. They also exhibited lower pitch, a
slower speech rate, and more time spent pausing. Notably, among
the individual speech features, slower speech rate exhibited the
largest effect size (η²= 0.15), whereas the composite speech score
demonstrated the strongest overall effect (η²= 0.27).
Consistent with these group differences, ROC analyses showed

that the same speech features provided moderate to strong
discrimination of MDD, with the speech composite achieving the
highest classification accuracy (AUC= 0.90). Pitch variance was
the only feature that did not differ between groups and showed
weak classification accuracy. Together, these findings highlight
the potential of speech-based measures as objective and
accessible indicators of depressive symptoms.
Although speech features differed between individuals with

MDD and non-depressed control participants, after FDR correction
none were significantly associated with depression severity, as
measured by the HAMD-17. Several factors may account for this
lack of association. One possibility is that speech features serve
more effectively as markers of depression presence than severity,

given that they differed between individuals with MDD and
controls and discriminated between the two groups. This
interpretation is consistent with prior research suggesting that
cognitive difficulties are commonly observed in individuals with
depression but often fail to correlate with severity scores on
traditional depression scales [67].
Another possibility is that speech features capture aspects of

depression that the HAMD-17 does not. The HAMD-17 predomi-
nantly assesses somatic symptoms such as fatigue, insomnia,
sexual dysfunction, and appetite/weight changes [68], with less
attention placed on cognitive and behavioral components of
depression, such as indecisiveness and psychomotor slowing
[69–71]. It is possible that depression scales that more fully
capture these symptoms may reveal stronger associations
between speech features and depression severity.
Although speech features were not associated with depression

severity, they were associated with executive function perfor-
mance, as measured by anti-saccade RT on the IPAST. Slower anti-
saccade RT was associated with more negative and less agentic
language, lower mean pitch, and the composite speech score.
Associations with more emotionally intense language and more
time spent pausing showed similar patterns but did not meet the
threshold for statistical significance. These findings suggest that
speech features may capture executive difficulties not fully

Fig. 2 Associations between speech features and performance on the executive function task, as measured by anti-saccade
reaction time. A More negatively valenced language was associated with worse performance (FDR-adjusted p= 0.02, f2= 0.10). B More
emotionally intense language was associated with worse performance at trend-level (FDR-adjusted p= 0.06, f2= 0.06). C Language reflecting
less agency was associated with worse performance (FDR-adjusted p= 0.01, f2= 0.13). D Lower mean pitch was related to worse performance
(FDR-adjusted p= 0.02, f2= 0.10). E There was no association between pitch variance and performance (FDR-adjusted p= 0.35, f2= 0.10).
F More time spent pausing was associated with worse performance (FDR-adjusted p= 0.09, f2= 0.05). G Slower speech rate was associated
with worse performance at trend level (FDR-adjusted p= 0.12, f2= 0.04). H Greater speech composite scores were associated with worse
performance (FDR-adjusted p= 0.006, f2= 0.18). RT reaction time (slower reaction time reflects worse executive function performance), s
Seconds.
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reflected by the HAMD-17, highlighting a potential limitation of
the scale. Importantly, these associations persisted after control-
ling for processing speed, and speech features were not related to
processing speed, indicating that the relationships were driven by
executive difficulties rather than general slowing.
The observed associations between linguistic speech features

(i.e., more negatively valenced and less agentic language) and
poorer executive function align with cognitive models of
depression. These models propose that executive dysfunction
contributes to difficulties suppressing negative information
[48, 49, 72], reduces motivation and goal-directed behavior [72],
and promotes negative self-appraisals [47, 73]. We also found that
lower mean pitch was associated with poorer executive function
performance. This may reflect diminished top-down executive
control of expressive behavior, resulting in flatter and less varied
speech.
Although slower speech and more time spent pausing have

been attributed to psychomotor slowing in depression [67], we
did not observe significant associations between these features
and pro-saccade or anti-saccade RT after correcting for multiple
comparisons. One possibility is that pro-saccade latency primarily
captures basic sensorimotor speed, whereas speech rate and
pausing rely to a greater extent on higher-order processes such as
working memory, attentional control, and language planning
[74–76]. Speech rate and pausing were also unrelated to anti-
saccade RT, and may capture processes that are distinct from the
executive demands required for fluent and coherent speech.
Together, these results suggest that aspects of speech may serve
as sensitive markers of executive dysfunction in depression,
reflecting cognitive difficulties not captured by standard clinical
assessments.
The study findings should be interpreted within the context of

its limitations. First, our sample was limited to individuals with
treatment-resistant MDD, all with HAMD-17 scores above 16
(moderate severity). This constrains the generalizability of our
findings, leaving it unclear whether they apply to individuals with
non–treatment-resistant MDD or to those with milder depressive
symptoms. Second, HAMD-17 data were not collected for the non-
depressed control group, precluding examination of associations
across the full sample. Including this measure in both groups
might have strengthened the ability to detect relationships
between HAMD-17 scores and speech features. Third, the eye-
tracking task was completed by a smaller subset of participants
due to scheduling constraints and the need for in-person
assessment. Importantly, those who completed the task did not
differ significantly from those who did not in terms of age, sex,
years of education, age of English acquisition, and HAMD-17
scores (Table S8). Fourth, the cross-sectional study design
precluded us from determining whether speech features can
track changes in depression severity over time, including response
to treatment. Fifth, our selection of speech features was
hypothesis-driven, focusing on a predefined subset of linguistic
and acoustic features previously associated with depression. While
this allowed us to test theory-driven predictions, it may have led
to the omission of other potentially informative features. Future
studies with larger samples could benefit from a more exploratory
or data-driven approach to identify additional relevant markers.
Finally, we used the HAMD-17 to assess depression severity, as it is
widely used, but we have also noted its limitations. This means we
are validating our findings against a measure we believe may be
incomplete, highlighting a broader challenge in the field.
In conclusion, speech features differed significantly between

individuals with MDD and non-depressed control participants and
were associated with executive function performance. These
findings suggest that speech features could serve as an objective
and valuable tool for assessing both depression and its associated
cognitive difficulties, an important consideration given the strong
link between cognitive difficulties with poor functional outcomes

and reduced quality of life [4]. Moreover, speech markers are
low-burden, cost-effective, and can be collected remotely,
making them a highly practical tool for both clinical and
research settings.

DATA AVAILABILITY
The datasets generated and analyzed in this study are available upon reasonable
request from the corresponding author.

REFERENCES
1. Depressive disorder (depression). https://www.who.int/news-room/fact-sheets/

detail/depression. Updated August, 2025. Accessed 2 May 2025.
2. Lou Y, Lei Y, Mei Y, Leppänen PHT, Li H Review of abnormal self-knowledge in

major depressive disorder. Front Psychiatry 2019;10. https://doi.org/10.3389/
fpsyt.2019.00130.

3. Blaney PH. Affect and memory: a review. Psychol Bull. 1986;99:229–46.
4. McIntyre RS, Cha DS, Soczynska JK, Woldeyohannes HO, Gallaugher LA, Kudlow P,

et al. Cognitive deficits and functional outcomes in major depressive disorder:
determinants, substrates, and treatment interventions. Depress Anxiety.
2013;30:515–27.

5. Cummins N, Sethu V, Eppsgspan>J, Schnieder S, Krajewski J. Analysis of acoustic
space variability in speech affected by depression. Speech Commun.
2015;75:27–49.

6. Low DM, Bentley KH, Ghosh SS. Automated assessment of psychiatric disorders
using speech: a systematic review. Laryngoscope Investig Otolaryngol.
2020;5:96–116.

7. Cowie R, Douglas-Cowie E, Tsapatsoulis N, Votsis G, Kollias S, Fellenz W, et al.
Emotion recognition in human-computer interaction. IEEE Signal Process Mag.
2001;18:32–80.

8. Yang B, Lugger M. Emotion recognition from speech signals using new harmony
features. Signal Process. 2010;90:1415–23.

9. Tølbøll KB. Linguistic features in depression: a meta-analysis. J Lang Work -
Sprogvidenskabeligt Stud. 2019;4:39–59.

10. Burkhardt HA, Alexopoulos GS, Pullmann MD, Hull TD, Areán PA, Cohen T.
Behavioral activation and depression symptomatology: longitudinal assessment
of linguistic indicators in text-based therapy sessions. J Med Internet Res.
2021;23:e28244.

11. Rude S, Gortner E-M, Pennebaker J. Language use of depressed and depression-
vulnerable college students. Cogn Emot. 2004;18:1121–33.

12. Lyons M, Aksayli ND, Brewer G. Mental distress and language use: linguistic
analysis of discussion forum posts. Comput Hum Behav. 2018;87:207–11.

13. Trifu RN, Nemeș B, Herta DC, Bodea-Hategan C, Talaș DA, Coman H Linguistic
markers for major depressive disorder: a cross-sectional study using an auto-
mated procedure. Front Psychol 2024;15. https://doi.org/10.3389/
fpsyg.2024.1355734.

14. Stade EC, Ungar L, Eichstaedt JC, Sherman G, Ruscio AM. Depression and anxiety
have distinct and overlapping language patterns: results from a clinical interview.
J Psychopathol Clin Sci. 2023;132:972–83.

15. Baddeley JL, Pennebaker JW, Beevers CG. Everyday social behavior during a
major depressive episode. Soc Psychol Personal Sci. 2013;4:445–52.

16. De Choudhury M, Counts S, Horvitz E Social media as a measurement tool of
depression in populations. In: Proceedings of the 5th Annual ACM Web Science
Conference. New York, NY, USA: Association for Computing Machinery; 2013. pp
47–56.

17. Zogan H, Razzak I, Wang X, Jameel S, Xu G. Explainable depression detection with
multi-aspect features using a hybrid deep learning model on social media. World
Wide Web. 2022;25:281–304.

18. Lihao Wang. Social media data mining and mental health status assessment
based on sentiment analysis. J Electr Syst. 2024;20:381–6.

19. Settanni M, Marengo D Sharing feelings online: studying emotional well-being
via automated text analysis of facebook posts. Front Psychol 2015;6. https://
doi.org/10.3389/fpsyg.2015.01045.

20. Howes C, Purver M, McCabe R Linguistic indicators of severity and progress in
online text-based therapy for depression. In: Resnik P, Resnik R, Mitchell M (eds).
Proceedings of the Workshop on Computational Linguistics and Clinical Psychology:
From Linguistic Signal to Clinical Reality. Baltimore, Maryland, USA: Association for
Computational Linguistics: 2014. pp 7–16.

21. Breznitz Z. Verbal indicators of depression. J Gen Psychol. 1992;119:351–63.
22. Darby JK, Simmons N, Berger PA. Speech and voice parameters of depression: a

pilot study. J Commun Disord. 1984;17:75–85.
23. Kuny S, Stassen HH. Speaking behavior and voice sound characteristics in

depressive patients during recovery. J Psychiatr Res. 1993;27:289–307.

M. Wiseman et al.

7

Translational Psychiatry          (2025) 15:525 

https://www.who.int/news-room/fact-sheets/detail/depression
https://www.who.int/news-room/fact-sheets/detail/depression
https://doi.org/10.3389/fpsyt.2019.00130
https://doi.org/10.3389/fpsyt.2019.00130
https://doi.org/10.3389/fpsyg.2024.1355734
https://doi.org/10.3389/fpsyg.2024.1355734
https://doi.org/10.3389/fpsyg.2015.01045
https://doi.org/10.3389/fpsyg.2015.01045


24. Nilsonne Å. Acoustic analysis of speech variables during depression and after
improvement. Acta Psychiatr Scand. 1987;76:235–45.

25. Kiss G, Vicsi K. Mono- and multi-lingual depression prediction based on speech
processing. Int J Speech Technol. 2017;20:919–35.

26. Alghowinem S. From joyous to clinically depressed: mood detection using mul-
timodal analysis of a person's appearance and speech. 2013 Humaine Association
Conference on Affective Computing and Intelligent Interaction; 2013; Geneva,
Switzerland. p. 648–654. https://doi.org/10.1109/ACII.2013.113.

27. Calić G, Petrović-Lazić M, Mentus T, Babac S. Acoustic features of voice in adults
suffering from depression. Psihol Istraživanja. 2022;25:183–203.

28. Sanchez MH, Vergyri D, Ferrer L, Richey C, Garcia P, Knoth B et al. Using prosodic
and spectral features in detecting depression in elderly males. Proc Interspeech
2011; 3001-4. https://doi.org/10.21437/Interspeech.2011-751

29. Darby JK, Hollien H. Vocal and speech patterns of depressive patients. Folia
Phoniatr. 1977;29:279–91.

30. Godfrey HP, Knight RG. The validity of actometer and speech activity measures in
the assessment of depressed patients. Br J Psychiatry. 1984;145:159–63.

31. Greden JF, Carroll BJ. Decrease in speech pause times with treatment of endo-
genous depression. Biol Psychiatry. 1980;15:575–87.

32. Hardy P, Jouvent R, Widlöcher D. Speech pause time and the retardation rating scale
for depression (ERD): towards a reciprocal validation. J Affect Disord. 1984;6:123–7.

33. Szabadi E, Bradshaw CM, Besson JA. Elongation of pause-time in speech: a simple,
objective measure of motor retardation in depression. Br J Psychiatry J Ment Sci.
1976;129:592–7.

34. Cummins N, Dineley J, Conde P, Matcham F, Siddi S, Lamers F, et al. Multilingual
markers of depression in remotely collected speech samples: a preliminary
analysis. J Affect Disord. 2023;341:128–36.

35. Menne F, Dörr F, Schräder J, Tröger J, Habel U, König A, et al. The voice of
depression: speech features as biomarkers for major depressive disorder. BMC
Psychiatry. 2024;24:794.

36. Alpert M, Pouget ER, Silva RR. Reflections of depression in acoustic measures of
the patient’s speech. J Affect Disord. 2001;66:59–69.

37. Horwitz R, Quatieri TF, Helfer BS, Yu B, Williamson JR, Mundt J. On the relative
importance of vocal source, system, and prosody in human depression. 2013 IEEE
International Conference on Body Sensor Networks; 2013; Cambridge, MA, USA. p.
1–6. https://doi.org/10.1109/BSN.2013.6575522.

38. Quatieri TF, Malyska N. Vocal-source biomarkers for depression: a link to psy-
chomotor activity. Proceedings of the 13th Annual Conference of the International
Speech Communication Association (Interspeech 2012); 2012 Sep 9–13; Portland,
OR, USA. p. 1059–1062. https://doi.org/10.21437/Interspeech.2012-311.

39. Mundt JC, Vogel AP, Feltner DE, Lenderking WR. Vocal acoustic biomarkers of
depression severity and treatment response. Biol Psychiatry. 2012;72:580–7.

40. Ellgring H, Scherer KR. Vocal indicators of mood change in depression. J Non-
verbal Behav. 1996;20:83–110.

41. Cannizzaro M, Harel B, Reilly N, Chappell P, Snyder PJ. Voice acoustical mea-
surement of the severity of major depression. Brain Cogn. 2004;56:30–35.

42. Stassen HH, Kuny S, Hell D. The speech analysis approach to determining onset of
improvement under antidepressants. Eur Neuropsychopharmacol J Eur Coll
Neuropsychopharmacol. 1998;8:303–10.

43. Mundt JC, Snyder PJ, Cannizzaro MS, Chappie K, Geralts DS. Voice acoustic
measures of depression severity and treatment response collected via interactive
voice response (IVR) technology. J Neurolinguist. 2007;20:50–64.

44. Alhanai T, Au R, Glass J. Spoken language biomarkers for detecting cognitive
impairment. 2017 IEEE Automatic Speech Recognition and Understanding Work-
shop (ASRU); 2017 Dec 16–20; Okinawa, Japan. p. 409–416. https://doi.org/
10.1109/ASRU.2017.8268965.

45. Toth L, Hoffmann I, Gosztolya G, Vincze V, Szatloczki G, Banreti Z, et al. A
Speech recognition-based solution for the automatic detection of mild cog-
nitive impairment from spontaneous speech. Curr Alzheimer Res.
2018;15:130–8.

46. Lee RSC, Hermens DF, Porter MA, Redoblado-Hodge MA. A meta-analysis of
cognitive deficits in first-episode major depressive disorder. J Affect Disord.
2012;140:113–24.

47. Gotlib IH, Joormann J. Cognition and depression: current status and future
directions. Annu Rev Clin Psychol. 2010;6:285–312.

48. LeMoult J, Gotlib IH. Depression: a cognitive perspective. Clin Psychol Rev.
2019;69:51–66.

49. Grahek I, Everaert J, Krebs RM, Koster EHW. Cognitive control in depression:
toward clinical models informed by cognitive neuroscience. Clin Psychol Sci.
2018;6:464–80.

50. Rock PL, Roiser JP, Riedel WJ, Blackwell AD. Cognitive impairment in depression: a
systematic review and meta-analysis. Psychol Med. 2014;44:2029–40.

51. Buist-Bouwman MA, Ormel J, de Graaf R, de Jonge P, van Sonderen E, Alonso J,
et al. Mediators of the association between depression and role functioning. Acta
Psychiatr Scand. 2008;118:451–8.

52. Yep R, Smorenburg ML, Riek HC, Calancie OG, Kirkpatrick RH, Perkins JE et al.
Interleaved pro/anti-saccade behavior across the lifespan. Front Aging Neurosci
2022;14. https://doi.org/10.3389/fnagi.2022.842549.

53. Berlim MT, Turecki G. Definition, assessment, and staging of treatment-resistant
refractory major depression: a review of current concepts and methods. Can J
Psychiatry Rev Can Psychiatr. 2007;52:46–54.

54. Winterlight Labs. https://winterlightlabs.com/. Updated 2025, Accessed 6 Feb
2023.

55. Robin J, Xu M, Balagopalan A, Novikova J, Kahn L, Oday A, et al. Automated
detection of progressive speech changes in early alzheimer’s disease. Alzheimers
Dement Amst. 2023;15:e12445.

56. Heiberger VL, Horii Y Jitter and shimmer in sustained phonation. In: Lass NJ (ed).
Speech and Language. Elsevier, 1982, pp 299–332.

57. Farrús M, Hernando J, Ejarque P Jitter and shimmer measurements for speaker
recognition. In: Interspeech 2007. ISCA, 2007, pp 778-81.

58. Mitra V, Franco H, Stern RM, van Hout J, Ferrer L, Graciarena M et al. Robust
features in deep-learning-based speech recognition. In: Watanabe S, Delcroix
M, Metze F, Hershey JR, editors., New Era for Robust Speech Recognition:
Exploiting Deep Learning. Cham: Springer International Publishing; 2017. pp.
187–217. pp.

59. Al-Karawi KA, Al-Bayati B. The effects of distance and reverberation time on
speaker recognition performance. Int J Inf Technol. 2024;16:3065–71.

60. Coe BC, Munoz DP. Mechanisms of saccade suppression revealed in the anti-
saccade task. Philos Trans R Soc Lond B Biol Sci. 2017;372:20160192.

61. McDowell JE, Dyckman KA, Austin BP, Clementz BA. Neurophysiology and neu-
roanatomy of reflexive and volitional saccades: evidence from studies of humans.
Brain Cogn. 2008;68:255–70.

62. Kahana Levy N, Lavidor M, Vakil E. Prosaccade and antisaccade paradigms in
persons with alzheimer’s disease: a meta-analytic review. Neuropsychol Rev.
2018;28:16–31.

63. Cecchetti S, Duchowski AT, Cavallo M. Eye-tracking metrics as a digital biomarker
for neurocognitive disorders in multiple sclerosis: a scoping review. Brain Sci.
2025;15:149.

64. Riek HC, Brien DC, Coe BC, Huang J, Perkins JE, Yep R, et al. Cognitive correlates of
antisaccade behaviour across multiple neurodegenerative diseases. Brain Com-
mun. 2023;5:fcad049.

65. Poletti B, Carelli L, Solca F, Lafronza A, Pedroli E, Faini A, et al. An eye-tracker
controlled cognitive battery: overcoming verbal-motor limitations in ALS. J
Neurol. 2017;264:1136–45.

66. Coe BC, Huang J, Brien DC, White BJ, Yep R, Munoz DP. Automated analysis
pipeline for extracting saccade, pupil, and blink parameters using video-based
eye tracking. Vision. 2024;8:14.

67. McClintock SM, Husain MM, Greer TL, Cullum CM. Association between depres-
sion severity and neurocognitive function in major depressive disorder: a review
and synthesis. Neuropsychology. 2010;24:9–34.

68. Fried EI. The 52 symptoms of major depression: lack of content overlap among
seven common depression scales. J Affect Disord. 2017;208:191–7.

69. Maust D, Cristancho M, Gray L, Rushing S, Tjoa C, Thase ME. Psychiatric rating
scales. Handb Clin Neurol. 2012;106:227–37.

70. Rabin JS, Davidson B, Giacobbe P, Hamani C, Cohn M, Illes J, et al. Neuromo-
dulation for major depressive disorder: innovative measures to capture efficacy
and outcomes. Lancet Psychiatry. 2020;7:1075–80.

71. Rosenblat JD, Simon GE, Sachs GS, Deetz I, Doederlein A, DePeralta D, et al.
Treatment effectiveness and tolerability outcomes that are most important to
individuals with bipolar and unipolar depression. J Affect Disord.
2019;243:116–20.

72. Roiser JP, Sahakian BJ. Hot and cold cognition in depression. CNS Spectr.
2013;18:139–49.

73. Grahek I, Shenhav A, Musslick S, Krebs RM, Koster EHW. Motivation and cognitive
control in depression. Neurosci Biobehav Rev. 2019;102:371–81.

74. Sjerps MJ, Meyer AS. Variation in dual-task performance reveals late initiation of
speech planning in turn-taking. Cognition. 2015;136:304–24.

75. Eichorn N, Pirutinsky S, Marton K. Effects of different attention tasks on con-
current speech in adults who stutter and fluent controls. J Fluen Disord.
2019;61:105714.

76. Shen C, Janse E. Maximum speech performance and executive control in young
adult speakers. J Speech Lang Hear Res JSLHR. 2020;63:3611–27.

77. Warriner AB, Kuperman V, Brysbaert M. Norms of valence, arousal, and dom-
inance for 13,915 english lemmas. Behav Res Methods. 2013;45:1191–207.

ACKNOWLEDGEMENTS
We thank all study participants and the authors for their invaluable contributions to
study design, data collection, and manuscript preparation. We also appreciate
Winterlight Labs for providing access to their speech-analysis platform. This work was

M. Wiseman et al.

8

Translational Psychiatry          (2025) 15:525 

https://doi.org/10.1109/ACII.2013.113
https://doi.org/10.21437/Interspeech.2011-751
https://doi.org/10.1109/BSN.2013.6575522
https://doi.org/10.21437/Interspeech.2012-311
https://doi.org/10.1109/ASRU.2017.8268965
https://doi.org/10.1109/ASRU.2017.8268965
https://doi.org/10.3389/fnagi.2022.842549
https://winterlightlabs.com/


funded by the Harquail Centre for Neuromodulation and the Canadian Institutes of
Health Research (CIHR, 191686).

AUTHOR CONTRIBUTIONS
MW and JSR conceived and designed the study. MW, MAW, GG, and LP collected the
speech data; RY and CP collected the eye-tracking data. MW performed data analysis
and interpretation with input from JSR and MV. MW wrote the manuscript with
critical revisions from JSR. DPM, BCC, and DB developed the eye-tracking task and
assisted with preprocessing. JR, MJS, and WS provided guidance on the use of
Winterlight Labs’ speech analysis tool. SN and PG screened participants, conducted
clinical assessments, and contributed to study design and interpretation. NL, as head
of the Harquail Centre, facilitated patient recruitment and provided input on study
design and interpretation. YY served as consulting speech pathologist. All authors
reviewed and approved the final manuscript.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41398-025-03728-2.

Correspondence and requests for materials should be addressed to Jennifer S. Rabin.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,

which permits any non-commercial use, sharing, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if youmodified
the licensed material. You do not have permission under this licence to share adapted
material derived from this article or parts of it. The images or other third partymaterial in
this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

M. Wiseman et al.

9

Translational Psychiatry          (2025) 15:525 

https://doi.org/10.1038/s41398-025-03728-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Objective speech measures capture depressive symptoms and associated cognitive difficulties
	Introduction
	Materials and methods
	Participants
	Speech assessment
	Executive function
	Statistical analysis

	Results
	Participant characteristics

	Discussion
	References
	Acknowledgements
	ACKNOWLEDGMENTS
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




